
Journal of Mathematical Chemistry Vol. 31, No. 2, February 2002 (© 2002)

On some structural properties of fullerene graphs
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We show how some important structural properties of general fullerene graphs follow from
the recently proved fact that all fullerene graphs are cyclically 4-edge connected. These prop-
erties, in turn, give us upper and lower bounds for various graph invariants. In particular,
we establish the best currently known lower bound for the number of perfect matchings in
fullerene graphs.
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1. Introduction

Soon after the establishment of the C60 structure [1] and the birth of fullerene
chemistry, the underlying graphs became a subject of increasing scientific interest. As
the main focus of the current chemical research is on buckminsterfullerene (the truncated
icosahedron isomer of C60) and its close relatives with isolated pentagons, there are
many results concerning the structure and the graphical invariants of the corresponding
graphs [2,3]. Much less is known about general fullerene graphs. We remind the reader
here that all fullerene graphs are cyclically 4-edge connected [4], and we will show
how many important structural properties follow from this fact. In doing this, we will
use many elements of the structural theory of matchings. We refer the reader to the
monograph [5] for more details on this topic. Also, all the terminology and notations
used in this article will be the same as in [5], if not stated otherwise. In particular, all
graphs considered here will be finite, simple and connected, withp vertices andq edges.

A fullerene graph is a planar, 3-regular and 3-connected graph, twelve of whose
faces are pentagons, and any remaining faces are hexagons. These same objects are
often referred to as fullerenes or by the more general term trivalent carbon cages in the
chemical literature.

2. The main result

A graphG is cyclically k-edge connected if G cannot be separated into two com-
ponents, each containing a cycle, by deletion of fewer thank edges.
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Figure 1. An example of a graph with girth 5 which is not cyclically 4-edge connected.

Theorem 1. Every fullerene graph is cyclically 4-edge connected.

The proof of this theorem is somewhat technical, and we refer the reader to [4],
where it is given with full detail.

Let us mention that the non-existence of cycles of size 3 and 4 is not a suffi-
cient condition for cyclical 4-edge connectivity. There are 3-connected, 3-regular planar
graphs with girth at least five which are not cyclically 4-edge connected. An example is
shown in figure 1.

3. Structural consequences and bounds

Let us now present some structural properties of fullerene graphs that follow from
theorem 1. In the first part of this section we present these properties in such a way that
they give successively better and better lower bounds for number of perfect matchings.

A matching M in a graphG is a set of edges ofG such that no two edges fromM
have a vertex in common. The number of edges in a matchingM is called thesize ofM.
A vertex v ∈ V (G) incident with some edgee ∈ M is covered by the matchingM.
A matchingM is perfect if it covers every vertex ofG. Perfect matchings are in chem-
istry known asKekulé structures. We denote the number of different perfect matchings
of a graphG by�(G).

Every fullerene graph has a perfect matching; this is an easy consequence of the
classical Petersen result that every connected cubic graph with no more than two cut-
edges has a perfect matching.
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A graphG is n-extendable, for 0 � n � p/2−1, if it is connected, has a matching
of sizen, and every such matching can be extended to a perfect matching inG.

0-extendable graphs are simply the connected graphs with perfect matchings.
A 1-extendable graphG is such that every edge appears in some perfect matching.
1-extendable graphs are interesting because there are some lower bounds of number
of perfect matchings in such graphs.

It is known thatn-extendability implies(n−1)-extendability [6]. We first establish
2-extendability of a general fullerene graph by combining theorem 1 with the following
result [6].

Theorem 2. If G is a cubic, 3-connected planar graph which is cyclically 4-edge con-
nected and has no face of size 4, thenG is 2-extendable.

Theorem 3. Every fullerene graph is 2-extendable.

Proof. Follows directly from theorems 1 and 2 and from the definition of fullerene
graphs. �

Corollary 4. Every fullerene graph is 1-extendable.

Using the fact that every 1-extendable graph withp vertices andq edges has at
least(q − p)/2+ 2 perfect matchings [5], we obtain the following result.

Corollary 5. Every fullerene graph onp vertices contains at leastp/4+ 2 perfect
matchings.

Proof. As every fullerene graph is cubic,q = 3p/2, and the claim follows. �

Even better lower bounds for�(G) are possible. A graphG is bicritical if G−u−v
has a perfect matching for every pair of distinct verticesu, v ∈ V (G). A 3-connected
bicritical graph is called abrick.

For bicritical graphs, the following result holds.

Theorem 6. A bicritical graphG onp vertices contains at leastp/2+1 different perfect
matchings.

The proof of theorem 6 can be found on [5, p. 303]. In the same book, on page 206
we find a result which connects 2-extendable and bicritical graphs.

Theorem 7. LetG be a 2-extendable graph onp � 6 vertices. ThenG is either bicriti-
cal or elementary bipartite.

(A bipartite graphG is elementary if every edge ofG appears in some perfect matching
of G.)
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The bicriticality of fullerene graphs now follows easily.

Theorem 8. Every fullerene graph is a brick.

Proof. As no fullerene graph is bipartite, and all fullerene graphs have at least twenty
vertices, we can see that all fullerene graphs satisfy the conditions of theorem 7, and
hence are bicritical. The 3-connectedness then makes every fullerene graph a brick.�

Corollary 9. Every fullerene graph onp vertices contains at leastp/2+ 1 perfect
matchings.

The lower bound�(G) � p/2+1 was established already in [4]. We see that only
the bicriticality of a fullerene graph was required. A recently proved conjecture about
bricks enabled us to exploit also the fact that every fullerene graph is also a brick. We
do not need this result in its full generality, hence we cite the following weaker form.

Theorem 10. In every brickG different fromK4,C6 and the Petersen graph, there is an
edgee� such that�(G− e�) � q − p.

HereK4 denotes the complete graph on 4 vertices, andC6 is the complement ofC6,
the cycle on 6 vertices.

Theorem 10 is a consequence of a more general result, proved in [7, theorem 3.2].
Now we can establish the best currently known lower bound for�(G).

Theorem 11. Every fullerene graph onp vertices contains at leastp/2 + 4 perfect
matchings.

Proof. Let G be a fullerene graph onp vertices. It obviously satisfies the conditions
of theorem 10 (K4 andC6 have 4 and 6 vertices, respectively, and the Petersen graph is
nonplanar), so there is an edgee� ∈ E(G) such that�(G− e�) � q − p = p/2.

Let us now find out in how many perfect matchings ofG the edgee� itself appears.
Consider the situation shown in figure 2. From 2-extendability ofG it follows that each
of the four matchings,{e′, f ′}, {e′, f ′′}, {e′′, f ′}, {e′′, f ′′} extends to a perfect matching
in G. Let us denote these perfect matchings byM1,M2,M3 andM4, respectively. Ob-
viously, no two of them can be equal, and the edgee� must appear in all of them, since
no other edge can cover the vertexu�. So,e� appears in at least four different perfect
matchings ofG. The claim now follows from the fact that every perfect matching ofG

containing the edgee� is a perfect matching ofG − u� − v�, and the obvious relation
�(G) = �(G− e�)+�(G− u� − v�). �

The bicriticality of fullerene graphs has, besides purely mathematical, interesting
chemical consequences, too. It means that every bisubstituted derivative of a fullerene
still permits a Kekulé structure. It may be of some chemical relevance to investigate
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Figure 2. With the proof of theorem 11.

Figure 3. Some nice subgraphs of a fullerene graph.

how far one can carry the substitution process and still retain a Kekulé structure. In
other words, we would like to find a broader class of induced subgraphs whose removal
from a fullerene graph leaves a graph with a perfect matching. Such subgraphs are said
to benice. It is clear that all nice subgraphs must have an even number of vertices.

Theorem 12. The following graphs are nice subgraphs of any fullerene graph:

(a) the graph consisting of two isolated vertices;

(b) K2, the complete graph on two vertices;

(c) the graph consisting of two disjoint copies ofK2;

(d) K1,3 (figure 3(a));

(e) P4, a path on 4 vertices (figure 3(b));

(f) the “fulvene” graphG6 (figure 3(c));

(g) the “quinoid” graphG8 (figure 3(d)).

Proof. The claim (a) follows from bicriticality, the claim (b) from 1-extendability and
the claim (c) from 2-extendability of fullerene graphs.
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To prove (d), take a vertexv ∈ V (G) and remove two of its neighbors, sayu′ and
u′′. Any perfect matchingM in the remaining graph (there is one, sinceG is bicritical!)
must cover the vertexv by the edgee, and it is obvious thatM − e is a perfect matching
in the graphG− v − u− u′ − u′′.

The claims (e)–(g) follow from the 2-extendability of fullerene graphs. Any perfect
matching containing the edgese′ ande′′ of a pathP4 will also contain a perfect matching
of the graphG − P4. Similarly, any perfect matching containing the edgese′ ande′′
of the graphG6 must also contain the edgef , and the remaining edges form a perfect
matching ofG−G6. The same argument proves the claim (g). �

Cyclical connectivity can be defined in terms of vertices, too. A graphG is cycli-
cally k-connected if it cannot be separated into two components, each containing a cycle,
by removing fewer thank vertices. The following property of fullerene graphs is a con-
sequence of their 3-regularity and cyclical 4-edge connectivity.

Corollary 13. Every fullerene graphG is cyclically 4-connected.

Proof. Take a fullerene graphG and a cut-setC = {v1, v2, v3} such that both compo-
nents,G′ andG′′ of G − C, contain a cycle. There are nine edges emanating fromC

toward the rest ofG. At least three of them must connectC andG′. If there are exactly
3 such edges, we get a contradiction, sinceG is cyclically 4-edge connected. From the
same reason, no component ofG−C can be connected withC by more than 5 edges. So,
the only remaining possibility is 4 edges fromC to one component, sayG′, and 5 edges
to the other component. From there it follows that two vertices ofC, sayv1 andv2, issue
one edge each towardG′, and the third vertex,v3, issues two edges towardG′. But now,
the two edges between{v1, v2} andG′ and the edge betweenv3 andG′′ form a set of
three edges, whose removal leaves two components, each containing a cycle. we have
arrived at a contradiction again, henceG must be at least cyclically 4-connected. �

As a consequence, we get the existence of a Hamilton cycle in all fullerenes with
less than 42 vertices. It follows from a result, proved in [8], that every cyclically
4-connected cubic planar graph on at most 40 vertices is Hamiltonian. In the same
article it is verified that every 3-connected cubic planar graph with face size at most 6
on at most 176 vertices is Hamiltonian. As the existence of a Hamilton cycle in a gen-
eral fullerene graph is still an open problem, we find it worthwhile to state this result
explicitly.

Corollary 14. Every fullerene graph on at most 176 vertices is Hamiltonian.

For the proof, see [8].
In a planar graph, the existence of a Hamilton cycle is equivalent to the existence

of a tree-partition in its dual [9].
A tree-partition of a graphG is a partition(V1, V2) of V (G) such that both graphs

induced byV1 andV2 are trees. The tree-partition isbalanced if |V1| = |V2|. Not every
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graph has a tree-partition (for example,Kn for n � 5). The example of two copies ofK4,
connected by an edge, shows that the existence or a tree-partition is not guaranteed even
in planar graphs.

Theorem 15. Every fullerene graph has a balanced tree-partition.

Proof. The existence of a tree-partition follows via the fact that the dual of a 3-regular
cyclically 4-edge connected planar graph is a 4-connected maximal planar graph, and
hence has a Hamilton cycle [10]. It remains to prove that this tree-partition is balanced.
It follows from [9, proposition 6]. We reproduce here the proof for the convenience of
the reader.

Let G = (V ,E) be a fullerene graph with a tree-partition(V1, V2). Then the
graphsG[Vi] induced byVi are trees, soG[Vi] is connected(i = 1,2). Definen := |V |,
Ti := G[Vi], ni := |Vi|. Denote byxi , yi andzi the numbers of vertices inTi with degree
1, 2 and 3, respectively(i = 1,2). Thenn1 + n2 = n, |E| = 3n/2, |E(Ti)| = ni − 1,
for i = 1,2. BecauseG[Vi] is a tree fori = 1,2, all edges ofG not in T1 or T2 are
betweenV1 andV2, and there are|E| − (n1 − 1) − (n2 − 1) = n/2+ 2 of them. It is
easily seen that the number of edges betweenT1 andT2 is equal to 2x1+ y1 = 2x2+ y2.
Furthermore, sinceni � 2, xi = 2+ zi for i = 1,2, hence,

n1= x1+ y1 + z1 = x1 + y1+ x1 − 2= 2x1 + y1− 2

= 2x2 + y2− 2= x2+ y2 + x2− 2= x2 + y2+ z2 = n2. �

Let us now turn our attention to some other graphical invariants of fullerene graphs.
A setI ⊆ V (G) is independent if no two vertices fromI are adjacent. The cardi-

nality of any biggest independent set inV (G) is called theindependence number of G
and denoted byα(G). A setS ⊆ V (G) is apoint cover of G if every edge ofG has at
least one end inS. Thecover number ofG is the cardinality of any smallest vertex cover
of G. We denote the cover number ofG by τ(G).

A well known property of bipartite graphs is that the biggest matching and the
smallest vertex cover have the same size. This property is called theKönig property.
Some nonbipartite graphs also have the König property (e.g., the “fulvene” graphG6),
but the fullerenes are not among them.

Theorem 16. No fullerene graph has the König property.

Proof. Every fullerene graph is a brick, and every brick contains an even subdivision
of K4 or C6 in its ear decomposition. But [5, theorem 6.3.7] states that a graphG has
the König property if and only if it does not contain a nice subgraph that is an even
subdivision ofK4 or an even subdivision of a certain graph on 6 vertices which is a
subgraph ofC6. The claim now follows by combining these results. �

The following bounds are direct consequences of theorem 16.
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Corollary 17. For any fullerene graphG on p vertices we haveτ(G) > p/2 and
α(G) < p/2.

The upper bound forα(G) follows from the fact thatG has a perfect matching, i.e.,
is 0-extendable. A better upper bound will follow if the 2-extendability ofG is used.

Corollary 18. For any fullerene graphG onp vertices we have

3

8
p � α(G) � p

2
− 2.

Proof. The right inequality follows from the fact that the independence number of an
n-extendable graph cannot exceedp/2− n [11]. The left inequality was proved in [12]
for triangle-free cubic planar graphs, and is hence valid for fullerenes too. �

The upper bound,α(G) � p/2− 2, cannot be improved for general fullerenes,
as the example of C20, the dodecahedral fullerene graph, shows. Regarding the lower
bound, there are some results for the fullerenes with isolated pentagons, but we are not
aware of any better results valid for all fullerenes.

The following property of independent sets in fullerene graphs is also a conse-
quence of their bicriticality.

Corollary 19. Every nonempty independent set in a fullerene graph has more neighbors
than elements.

We conclude our review of fullerene properties by presenting bounds for their sat-
uration number.

A saturation number, s(G), of a graphG is the minimum size of a maximal match-
ing in G. (A matching inG is maximal if it is not contained in any matching ofG of
greater cardinality. A perfect matching ofG−u−v in a bicritical graphG is an example
of a maximal matching inG which is not perfect, assuming the verticesu andv are not
adjacent.)

Theorem 20. For every fullerene graph onp vertices,⌈
p

4
+ 1

⌉
� s(G) � p

2
− 2.

Proof. The lower bound follows from the 2-extendability ofG, using the result, proved
in [11], that in ann-extendable graph its saturation number must be at least
p/4+n/2�.

To prove the upper bound, we construct a maximal matching inG with p/2− 2
edges. Let us refer once more to figure 3(d), and take a perfect matchingM containing
the edgese′, e′′, f ′ andf ′′ of the graphG8. Such a matching exists, sinceG8 is a nice
subgraph ofG (theorem 12). By replacing the edgese′, e′′, f ′ andf ′′ in M by the
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edgesg′ andg′′, we get a matchingM ′ of G which is obviously maximal and its size is
p/2− 2. �
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